

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Electromechanical Solutions for ATEX Environments

Explosion-Proof Servo Motors and Electro Cylinder

ENGINEERING YOUR SUCCESS.

Marning – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Electromechanical Solutions for ATEX Environments

Overview	5
High Force Electro Thrust Cylinder - ETH	7
Overview	7
Technical Characteristics	
Accessories for ETH Electro Cylinder	
Explosion Proof Servo Motor - EX Series	
Explosion Proof Servo Motor - EX Series	11
Explosion Proof Servo Motor - EX Series Overview Technical Characteristics	11 11 12

Parker Hannifin

The global leader in motion and control technologies

A world class player on a local stage

Global Product Design

Parker Hannifin has more than 40 years experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs.

Manufacturing to Meet Our Customers' Needs

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia.

Electromechanical Worldwide Manufacturing Locations

Europe

Littlehampton, United Kingdom Dijon, France Offenburg, Germany Filderstadt, Germany Milan, Italy

Asia

Wuxi, China Chennai, India

North America

Rohnert Park, California Irwin, Pennsylvania Charlotte, North Carolina New Ulm, Minnesota

Offenburg, Germany

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a network of dedicated sales teams and authorized technical distributors throughout Europe.

For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com

Milan, Italy

Littlehampton, UK

Electromechanical Manufacturing
Parker Sales Offices
Distributors

Dijon, France

Electromechanical Solutions for ATEX Environments

Overview

In working in environments which might be at risk from explosive substances the EU ATEX directives must be taken into consideration. The responsible parties must assess the area, where explosive gas/dust mixes may occur and, if necessary, subdivide them into individual zones. This zone classification allows the responsible parties correct selection of suitable machinery and equipment, for use in that area.

The table below describes the zone classifications of an installation, where potentially explosive atmospheres may occur.

User			Suitable machinery and devices			
Gas zone	Dust zone	Presence of potentially explosive atmospheres	Equipment	Equipment category	Area of application	
0		Permanently, often, for a long period	II	1G	Gases, mist, vapor	
	20	approx. >1000 h/year	П	1D	Dust	
1		Occasionally	П	2G	Gases, mist, vapor	
	21	approx. 101000 h/year	II	2D	Dust	
2		Rarely, for a short period, in the event of	П	3G	Gases, mist, vapor	
	22	an error approx. <10 h/year	II	3D	Dust	

* Equipment for use in areas (except underground in mining) which might be dangerous due to an explosive atmosphere..

ATEX Classification

Parker ETH - Electro Cylinders with the ATEX version are certified for use in explosive gas atmospheres (device group II, category 2G).

An ETH electro cylinder with the ATEX supplement complies with the requirements of the EC directive 94/9/ EC (ATEX 95). You can find here an explanation of the features and areas of usage resulting from the ATEX marking:

EX Series is a range of permanent magnet servo motors designed for use in explosive atmospheres and are CE marked in accordance with ATEX directive 94/9/CE

ETH032 & ETH050: II 2G c IIC T4

II	all areas, except underground (mining)
2G	Zone 1, 2, gas explosion category 2G, 3G
с	constructional safety in accordance with DIN EN 13463-5
IIC	suitable for explosive region IIA, IIB and IIC Typical gases: Hydrogen Ignition energy: >45 μJoule
T4	Temperature class 4 Ignition temperature of flammable substances >135 °C
ETH08	0, ETH100 & ETH125: II 2G c IIB T4
II	all areas, except underground (mining)
2G	Zone 1, 2, gas explosion category 2G, 3G
с	constructional safety in accordance with DIN EN 13463-5
IIB	suitable for explosion region IIA and IIB Typical gases: Ethylene Ignition energy: >160 μJoule
T4	Temperature class 4 Ignition temperature of flammable substances >135 °C

Se

Serie E	Serie EX: Gaseous atmospheres: II 2G Ex d IIB T4 IP64					
II	all areas, except underground (mining)					
2G	Zone 1, 2, gas explosion category 2G, 3G					
d	flameproof enclosure DIN EN 13463-3					
IIB	suitable for explosion region IIA and IIB Typical gases: Ethylene Ignition energy: >160 µJoule					
T 4	Temperature class 4 Ignition temperature of flammable substances >135 °C					

Product Design

Ballscrew

A high-quality precision class 7 ballscrew in accordance with ISO 3408 is used. The ball bearings between screw and nut ensure a low frictional resistance. This ensures an especially smooth operation over the entire speed range, high service life and excellent efficiency.

Screw support bearing (front end)

The front screw support bearing is supported by a polymer sliding bearing. This eliminates vibration and run-out. The result is quieter, smoother motion with better precision, longer screw life, and increased dynamic performance.

Piston Rod Anti-rotation Guidance

One of the unique design changes in the ETH is a new anti-rotation device. The high quality, maintenance free polymer bushing offers robust guidance preventing the piston rod from twisting as the rod extends and retracts.

Extruded cylinder body

The extrusion design reduces the number of slots or grooves for a cleaner overall design. The only slots are there for sensor mounting and are easily covered to eliminate any area for debris to be trapped. The result is a cleaner, more environmentally friendly design.

Screw Support Bearing (motor end)

A double stacked set of angular contact bearings allows for high thrust forces in both the extend and retract directions. The result is a design with high force density and minimal clearance when changing directions of motion.

Easy Lubrication Port

The integrated lubrication fitting allows quick, simple and easy access to regrease the ball screw. In the event the rear is inaccessible the port can be located in the center of the extrusion (optional) The result is reduced down time for product maintenance yielding a higher ROI and a longer product life.

Permanent magnet

All electro cylinders are equipped with several permanent magnets integrated into the screw nut. The permanent magnets actuate the sensors, which can be mounted in the longitudinal grooves of the cylinder body.

Piston Rod Support Bearing & Protection

The extra long cylinder rod bearing allows high lateral load forces. A wiper ring prevents the ingress of external contamination under normal conditions. In the event of fine dust, a high amount of dirt as well as muds and liquids, special sealing is required, which is available on request.

Sensors

The sensors are directly integrated into the profile; avoiding projecting edges. Cabling is neatly hidden under the yellow cover (fitting sensors available as accessories).

Toothed belt transmission

The slip and wear free toothed belt transmission for parallel drive cylinders (motor mounted parallel to the cylinder) features a high efficiency and a transmission ratio of 1:1.

Belt tensioning device

A sophisticated belt tensioning device for parallel motor mounting allows the toothed belt to be pre tensioned precisely.

High Force Electro Thrust Cylinder - ETH

Overview

Description

The ETH electro cylinder closes the gap between pneumatic and hydraulic actuators; it is suitable to replace those in many applications and simultaneously increase the reliability of the production process. Taking the costs for air and oil into consideration, you will find that in most cases an electromechanical system such as the ETH electro cylinder offers the more economical solution. Combined with a wide choice of accessories, it offers many possibilities in a wide variety of fields.

Typical areas of application

- Material handling and feed systems
 - wood and plastic working industry
 - vertical actuators for loading machine tools
 - in the textile industry for tensioning / gripping textile fabrics
 - in the automotive industry for transporting and feeding components
- Testing equipment and laboratory applications
- Valve and flap actuation
- Pressing
- Packaging machinery
- Process automation in the food and beverage industry

Features

- Unrivaled power density high forces and small frame sizes
- Cabling can be concealed in the profile
- Accessories with integrated force sensors help to allot and even to control forces precisely
- Optimized for safe handling and simple cleaning
- High service life
- Reduced maintenance costs thanks to lubricating access in the cylinder flange
- Easy replacement due to pneumatic ISO flange norm (DIN ISO 15552:2005-12) conformity
- Integrated anti-rotation device
- Reduced noise emission
- All from one source We offer the complete drive train: Drive controllers, motors and gearboxes to match the Electro Cylinder

Technical Characteristics - Overview

Туре	ETH Electro Cylinder
Frame sizes	ETH032 / ETH050 / ETH080 / ETH100 / ETH125
Screw lead	5, 10, 16, 20, 32 mm
Stroke	up to 2000 mm
Traction/thrust force	up to 114000 N
Speed	up to 1.7 m/s
Acceleration	up to 15 m/s ²
Equivalent dynamic axial force at a lifetime of 2500 km	up to 49 600 N
Efficiency	up to 90 %
Repeatability	up to ± 0.03 mm
Protection classes	IP54 IP54 with stainless screws IP65
Drive	Inline: Axial drive or parallel drive with high performance toothed belt
Directives	2011/65/EC: Conform to RoHS
	94/9/EC: ATEX Equipment group II Category 2 Suitable for gas environments of Zone 1 or 2
Classification	ETH032 / ETH050: II 2G c IIC T4 ETH080 / ETH100, ETH125: II 2G c IIB T4

Technical Characteristics

Cylinder size		Unit		ETH032		ETH050			ETH080		
type			M05	M10	M16 ⁴⁾	M05	M10	M20 ³⁾	M05	M10	M32 ⁴⁾
Screw lead		[mm]	5	10	16	5	10	20	5	10	32
Screw diameter		[mm]		16			20			32	
Travels, speeds and	accelerations										
Available strokes ^{1) 2)}		[mm]	continuous from 50-		contir	nuous fro	m 50-	contir	nuous fro	m 50-	
		[]	1000 &	standard	strokes	1200 &	standard	strokes	1600 &	standard	strokes
Max. permissible speed	at stroke =										
50-400 mm		[mm/s]	333	667	1067	333	667	1333	267	533	1707
600 mm		[mm/s]	286	540	855	333	666	1318	267	533	1/0/
800 mm		[mm/s]	196	3/3	592	238	462	917	267	533	1/0/
1000 mm		[mm/s]	146	211	440	1//	345	684 526	264	204	1001
1200 mm		[mm/s]	-	-	-	139	270	536	207	394	1233
1600 mm			-	-	-	-	-	-	140	267	8/1
Max Acceleration		$[m/c^2]$	-	8	12	-	8	- 15	140	207	15
		[11/5]	4	0	12	4	0	15	4	0	15
Forces	former menten inline	EN 17		0700	0.400		7000	4400		05100	10.000
Max. axial traction/thrus				3700	2400	9300	7000	4400		25100	10600
Max. axial traction/thrust	n < 100 min ⁻	[IN]		3280	2050		4920	2460	17000	11 600	2620
force depending on the motor speed n	100 < n < 300 min ⁻¹	[N]	3600	2620	1640	7870	3930	1960	17800	11620	3630
Motor parallel	n > 300 min ⁻¹	[N]		1820	1140	5480	2740	1370		10720	3350
Equivalent dynamic axia of 2500 km	force at a lifetime	[N]	1130	1700	1610	2910	3250	2740	3140	7500	6050
Max. transmissible to	orque / force cons	stant									
Max. transmissible torqu	e inline motor	[Nm]	3.2	6.5	6.8	8.2	12.4	15.6	15.7	44.4	60.0
Max. transmissible	n < 100 min ⁻¹	[Nm]	3.5	6	4	9.1	9	.3	17.5	22.8	
torque depending on the motor speed n	100 < n < 300 min ⁻¹	[Nm]	3.5	3.5 5.2		7.7	7.7		17.5	17.5 22.8	
Motor parallel	$n > 300 \text{ min}^{-1}$	[Nm]	3.5	35 36		5.4	5.4		17.5	.5 21.1	
Force constant motor inl	ine ⁵⁾	[N/Nm]	1131	565	353	1131	565	283	1131	565	177
Force constant motor pa	rallel ⁵⁾	[N/Nm]	1018	509	318	1018	509	254	1018	509	159
Mass											
Mass of base unit with z	ero stroke		1.0	1.0	10			0.5		7.0	0.7
(incl. Cylinder rod)		[kg]	1.2	1.2	1.3	2.2	2.3	2.5	6.9	7.6	8.7
Mass of additional stroke	e (incl. Cylinder rod)	[kg/m]	4.8			8.6			18.7		
Weight of cylinder rod wi	th zero stroke	[kg]	0.06			0.15			0.59		
Weight of cylinder rod - a	additional length	[kg/m]		0.99		1.85				4.93	
Mass moments of in	ertia										
Motor parallel without st	roke	[kgmm ²]	8.3	8.8	14.1	30.3	30.6	38.0	215.2	213.6	301.9
Motor inline without stro	ke	[kgmm ²]	7.1	7.6	12.9	25.3	25.7	33.1	166.2	164.5	252.9
Parallel/inline motor per	meter	[kgmm ² /m]	41.3	37.6	41.5	97.7	92.4	106.4	527.7	470.0	585.4
Accuracy: Bidirectio	nal Repeatability	(ISO230-2)									
Motor inline		[mm]					±0.03				
Motor parallel		[mm]					±0.05				
Efficiency											
Motor inline the efficiency includes		[%]	90								
Motor parallel a	[%]					81					
Ambient conditions											
Operating lemperature		[°C]					-10+70				
Ambient temperature							-10+40				
Storage temperature		[10]				0 05 0/	-20+40	donaina			
		[%]				090 %	000-001	ndensing) N			
Location neight range	lind	max. 3000									

¹⁾ "Order Code" (see ETH catalogue), ²⁾ Intermediate stroke lengths may be interpolated.

³⁾ ATEX on request

 $^{4)}\,$ ATEX not available, $^{5)}$ The efficiency factors are included in the force constants.

Cylinder size	Unit	ETH	100	ETH125			
type			M10 M20		M10	M20	
Screw lead		[mm]	10	20	10	20	
Screw diameter		[mm]	5	0	6	3	
Travels, speeds and	accelerations						
Available strokes ^{1) 2)}		[mm]	continuous 2000 & stan	from 100- dard strokes	continuous 2000 & stan	continuous from 100- 2000 & standard strokes	
Max. permissible speed	at stroke =						
100-400 mm		[mm/s]	400	800	417	833	
500 mm		[mm/s]	400	747	417	807	
600 mm		[mm/s]	333	622	395	684	
800 mm		[mm/s]	241	457	290	514	
1000 mm		[mm/s]	185	354	224	405	
1200 mm		[mm/s]	148	284	180	329	
1400 mm		[mm/s]	122	235	148	275	
1600 mm		[mm/s]	102	198	125	234	
2000 mm		[mm/s]	76	148	94	170	
Max. Acceleration		[m/s ²]	8	10	8	10	
Forces							
Max. axial traction/thrust	force motor inline	[N]		56000	88700	114000	
Max, axial traction/thrust	n < 100 min ⁻¹	[N]		50800		81 400	
force depending on the motor speed n	100 < n < 300 min ⁻¹	[N]	54800	43200	76300	73700	
Motor parallel	n > 300 min ⁻¹	[N]		35600		61000	
Equivalent dynamic axial 2500 km	force at a lifetime of	[N]	18410	27100	27 140	49600	
Max. transmissible to	orque / force const	ant					
Max. transmissible torqu	e inline motor	[Nm]	100	0 200		400	
Max. transmissible torqu	e n < 100 min ⁻¹	[Nm]		200		320	
depending on the motor speed n	100 < n < 300 min ⁻¹	[Nm]	108	170	150	290	
Motor parallel	n > 300 min ⁻¹	[Nm]		140		240	
Force constant motor inl	ne ⁵⁾	[N/Nm]	565	283	565	283	
Force constant motor pa	rallel ⁵⁾	[N/Nm]	509	254	509	254	
Weight							
Mass of base unit with ze (incl. Cylinder rod)	ero stroke	[kg]	21	23	56	64	
Mass of additional stroke	e (incl. Cylinder rod)	[kg/m]	39		6	2	
Weight of cylinder rod wi	th zero stroke	[kg]	1.2		2.9		
Weight of cylinder rod - a	dditional length	[kg/m]	7.	.8	14	.4	
Mass moments of in	ertia						
Motor parallel without str	oke	[kgmm ²]	5860	6240	17050	17990	
Motor inline without strol	(e	[kgmm ²]	2240	2620	12960	13400	
Parallel/inline motor per l	neter	[kgmm ² /m]	4270	4710	10070	10490	
Accuracy: Bidirection	nal Repeatability (I	SO230-2)					
Motor inline	[mm]		±0	.03			
Motor parallel	[mm]		±0	.05			
Efficiency							
Motor inline the efficiency includes all		[%]		9	0		
Motor parallel	clion torques	[%]		8	1		
Ambient conditions		10.01			70		
Operating Temperature		[°C]		-10	.+/0		
Ambient temperature				-10	.+40		
Storage temperature		[0/]		-20	.+40		
		[%]		090 % (non	3000		
Location neight range			max. 3000				

¹⁾ "Order Code" (see ETH catalogue), ²⁾ Intermediate stroke lengths may be interpolated.

⁵⁾ The efficiency factors are included in the force constants.

Technical Data apply under normal conditions and only for the individual operating and load modes. In the case of compound loads, it is necessary to verify in accordance with normal physical laws and technical standards whether individual ratings should be reduced. In case of doubt please contact Parker.

Accessories for ETH Electro Cylinder

Piston Rod Guide Module

The rod guiding performs the following tasks:

- Anti-rotation device for higher • torques
- Absorption of lateral forces
- Relieves the cylinder of lateral • forces

Home / limit switches

Mounting Methods

Foot mounting

Installation flanges

Mounting Flanges

Rear Clevis

Centre trunnion mounting

Rear Eye Mounting

Rod End

with external thread

with internal thread

Clevis

Force Sensor

Joint head with integrated force sensor

Motor and amplifier

Servo amplifier

For additional information please see our product catalog 192-490123 or our website www.parker.com/eme

Rear clevis with force sensor

Motors and gears

For additional information on motors please see our website www.parker.com/eme and for gears www.parker.com/eme/gear

Explosion Proof Servo Motor - EX Series

Overview

Description

EX series is a range of permanent magnet servo motor designed for use in explosive atmospheres. Featuring robust explosion-proof housings, EX motors are capable of bearing internal explosions with no risks of propagation to the neighbouring environment. Two versions are available, conforming with North American or European safety standards. EX servomotors are characterized by excellent motion quality, great acceleration / deceleration capabilities, and high torque output over a wide speed range. Various winding variants and numerous options are available to offer maximum flexibility.

Advantages

- · Servo motors with explosion proof housings
- CE or UL versions available
- High dynamic performance
- Compact and robust
- Maintenance free

Applications

- Food, Pharma & Beverage
- Material Forming
- Printing Industry
- Hazardous / Ex Enviroment
- Painting robots

Features

- Mounting
- Flange with clearance holes
- Mechanical interface
- Solid smooth shaft (standard)
- Solid shaft with key (option)
- Feedback sensors
 - 2 pole resolver (standard)
 - Absolute EnDat encoder (option)
 - Absolute Hiperface encoder (option)
- Thermal protection
 - Thermoswitches and thermofuses integrated in the windings
- Other options
 - Parking brake

Technical Characteristics - Overview

Motor type	Permanent magnet synchronous motors					
Number of poles	10					
Torque range	1.75 35 Nm					
Speed range	20008000 min ⁻¹					
Marking	CE	UL				
Voltage supply	230 / 400 VAC	230 / 480 VAC				
Conformance	ATEX 94/9/EC Directive	UL 674 standard: Electric Motors and Generators for use in Division 1 Hazardous (Classified) Locations				
	EN60079-0, EN60079-1 EN61241-0 and EN61241-1 standards					
	II 2G Ex d IIB T4 IP64 (Gas)	Class 1, Division 1, Group C & D				
Classification	II 2GD Ex d IIB T4 IP65 Ex tD A21 IP65 T135 °C (Gas and dust)					
Ingress	IP64 (standard)	IP65				
protection level	IP65 (option)					
Connections	Cable glands	Tapped holes				

Electromechanical Solutions for ATEX Environments Technical Characteristics

Technical Characteristics

Rated Speed	Stall Torque	Stall Current	Rated Torque	Rated Current	Peak Torque	Peak Current	Max. Speed with Compax3	Moment of Inertia	Product Code		
N _{max} [min ⁻¹]	M₀ [Nm]	I ₀ [A _{RMS}]	M _N [Nm]	I _N [А _{RMS}]	M _{max} [Nm]	I _{max} [А _{RMS}]	N _{max} [min⁻¹]	J [kgmm²]			
230 VAC power supply											
2300	1.75	1.24	1.66	1.19	6.6	5.64	1960	79	EX310E	PR1 🔳 🔳	
4000	1.75	2.16	1.54	1.96	6.6	9.85	3630	79	EX310E	KR1 🔳 🔳	
2300	3.5	2.46	3.18	2.26	13.4	11.3	2030	290	EX420E	PR1 🔳 🔳	
4000	3.5	4.26	2.67	3.33	13.4	19.6	3700	290	EX420E	JR1 🔳 🔳	
3200	4.8	4.57	3.74	3.68	18.8	21	2930	426	EX430E	JR1 🔳 🔳	
4000	4.8	5.79	3.26	4.07	18.8	26.6	3790	426	EX430E	FR1 🔳 🔳	
2500	7	5.51	5.49	4.47	26.7	24.8	2310	980	EX620E	OR1 🔳 🔳	
3000	10.4	9.28	7.24	6.75	40	42.2	2860	1470	EX630E	IR1 🔳 🔳 I	
2200	14	9.28	11.16	7.49	50	41.8	2050	3200	EX820E	RR1 🔳 🔳	
3600	14	14.85	7.53	8.3	50	66.9	3430	3200	EX820E	LR1 🔳 🔳	
2200	24.5	16	14.18	9.54	92	72.7	2120	6200	EX840E	JR1 🔳 🔳	
2500	35	27.9	9	7.82	137	133	2500	9200	EX860E	DR1 🔳 🔳	
400 VAC	C power s	supply									
4000	1.75	1.24	1.54	1.12	6.6	5.64	3600	79	EX310E	PR1 🔳 🔳	
2000	3.5	1.24	3.22	1.15	13.4	5.68	1740	290	EX420E	VR1 🔳 🔳	
4000	3.5	2.46	2.68	1.93	13.4	11.3	3720	290	EX420E	PR1 🔳 🔳	
3000	4.8	2.46	3.9	2.03	18.8	11.3	2740	426	EX430E	PR1 🔳 🔳	
4000	4.8	3.3	3.26	2.31	18.8	15.1	3740	426	EX430E	LR1 🔳 🔳	
4300	7	5.51	3.13	2.75	26.7	24.8	4240	980	EX620E	OR1 🔳 🔳	
2900	10.4	5.11	7.42	3.8	40	23.2	2750	1470	EX630E	YR1 🔳 🔳	
4000	10.4	6.92	5.2	3.76	40	31.4	3820	1470	EX630E	NR1 🔳 🔳	
2200	14	5.4	11.16	4.36	50	24.3	2080	3200	EX820E	WR1 🔳 🔳	
3600	14	9.3	7.53	5.19	50	41.8	3600	3200	EX820E	RR1 🔳 🔳	
2100	24.5	8.55	15	5.37	92	38.8	1950	6200	EX840E	QR1 🔳 🔳	
3300	24.5	14.3	2.85	2.07	92	64.7	3300	6200	EX840E	KR1 🔳 🔳	
2500	35	15.7	9	4.4	137	75	2500	9200	EX860E	JR1 🔳 🔳	

Drive Associations

			Associated Drive Sizes					
				Com	ipax3	SLVD-N		
Electro cylinder Motor		Max. Speed ¹⁾ N _{max} [min ⁻¹]	Drive	Max. Speed ¹⁾ with Compax3 N _{max} [min ⁻¹]	Drive	Max. Speed ¹⁾ with SLVD-N N _{max} [min ⁻¹]		
230 VAC powers	supply							
	EX310E■PR1		2300	C3S025V2	1960	SLVD1N	1960	
ETH032/ETH050	EX310E■KR1		4000	C3S025V2	3630	SLVD2N	3630	
	EX420E■PR1		2300	C3S025V2	2030	SLVD2N	2030	
ETH050/ETH080	EX420E■JR1		4000	C3S063V2	3700	SLVD5N	3700	
	EX430E■JR1		3200	C3S063V2	2930	SLVD5N	2930	
	EX430EEFR1		4000	C3S063V2	3790	SLVD7N	3790	
	EX620E■OR1		2500	C3S063V2	2310	SLVD7N	2310	
	EX630E∎IR1		3000	C3S100V2	2860	SLVD10N	2860	
-	EX820E■RR1		2200	C3S100V2	2050	SLVD10N	2050	
-	EX820E■LR1		3600	C3S150V2	3430	SLVD15N	3430	
-	EX840E■JR1		2200	-	2120	SLVD17N	2120	
-	EX860E■DR1		2500	-	2500	-	-	
400 VAC powers	supply							
ETH032/ETH050	EX310E■PR1		4000	C3S015V4	3600	-	-	
	EX420E■VR1		2000	C3S015V4	1740	-	-	
	EX420E■PR1		4000	C3S038V4	3720	-	-	
ETH030/ETH080	EX430E■PR1		3000	C3S038V4	2740	-	-	
	EX430E■LR1		4000	C3S038V4	3740	-	-	
	EX620E■OR1		4300	C3S075V4	4240	-	-	
ETH050/ETH080	EX630E■YR1		2900	C3S075V4	2750	-	-	
	EX630E■NR1		4000	C3S075V4	3820	-	-	
-	EX820E■WR1		2200	C3S075V4	2080	-	-	
-	EX820E■RR1		3600	C3S150V4	3600	-	-	
-	EX840E■QR1		2100	C3S150V4	1950	-	-	
-	EX840E■KR1		3300	C3S150V4	3300	-	-	
-	EX860E■JR1		2500	C3S300V4	2500	-	-	

¹⁾ Absolute speed limit Please refer to the document "ETH ATEX Conditions for use" see page 14

Note:

Please note in parallel motor mounting to ETH032, ETH050 and ETH080 the maximum radial load on the motor shaft (see relevant information in the operating instructions of the EX motor).

ETH - Electro Thrust Cylinder for ATEX Environment

Parker Hannifin has extended its range of well known ETH - High Force Electro Thrust Cylinder for the use in explosive atmospheres (ATEX). The new ETH ATEX includes all the same advantages as the existing range, offering precise motion, positioning, setting and actuation, but now even in explosive atmospheres.

The ETH ATEX range is ATEX certified for device group II, category 2 in explosive gas atmospheres. In conjunction with the ATEX certified EX series servomotors, Parker Hannifin offers a complete solution for ATEX applications.

Target Markets / Applications

A ATEX environment can contains a mixture of air and flammable substances such as gas, vapor or fluids which are potentially explosive under atmospheric conditions. ATEX certified devices are essential in these conditions.

Typical applications:

- Oil & Gas Industry
- Chemical and pharmaceutical industries ٠
- Food processing (distillery) •
- Printing & Plastic Industry ٠
- Energy (Generation of Bio gas, gas turbines)
- Automotive industry (Paint finish)
- Waste processing plants

How to proceed when selecting an ATEX Cylinder

- Select an ETH Electro Thrust Cylinder by means of ETH catalogue [192-550017].
- Check, whether the selected ETH Electro Thrust Cylinder corresponds to all ATEX demands in your application using the document "ETH ATEX frame conditions for applications" [192-550006].
- In case the specifications cannot be met, please choose a larger electro cylinder and recheck the application data (e.g. different cycle times).
- An application-specific release is feasible by measuring the self-heating of the cylinder with your application data within our company (see "ETH ATEX frame conditions for applications" [192-550006]).

"ETH ATEX Conditions for use" (190-550006) pdf aerman (192-550006) english pdf

"ETH ATEX Operating instructions"

(190-550003)

(192-550003)

pdf

pdf

"ETH catalogue"

french

german (190-550017) english (192-550017)

pdf (193-550017) pdf (197-550017) pdf

pdf

italian www.parker.com/eme/eth

"EX Serie catalogue"

(190-063001) aerman english (192-063001) french (193-063001) (197-063001) italian www.parker.com/eme/ex

pdf	
pdf	×
pdf	
pdf	

aerman

english

Parker's Motion & Control Technologies

Fluid & Gas Handling

Key Markets Aerial lift Agriculture Bulk chemical handling Construction machinery Food & beverage Fuel & gas delivery Industrial machinery Life sciences Marine Mining Mobile Oll & gas Renewable energy Transportation

Key Products

Check valves Connectors for low pressure fluid conveyance Deep sea umbilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTFE hose & lubing Quick couplings Rubber & thermoplastic hose Tube fittings & adapters Tubing & plastic fittings

Aerospace Key Markets

Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Military aircraft Missiles Power generation Regional transports Unmanned aerial vehicles

Key Products Control systems &

actuation[°]products Engine systems & components Fluid conveyance systems & components Fluid conveyance systems & atomization devices Fuel systems & components Fuel tank inerting systems Hydraulic systems & components Thermal management Wheels & brakes

Hydraulics Key Markets

Aerial lift Agriculture Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oli & gas Power generation Refuse vehicles Renewable energy Truck hydraulics Turf equipment

Key Products

Accumulators Cartridge valves Electrohydraulic actuators Human machine interfaces Hydraulic cylinders Hydraulic cylinders Hydraulic usstems Hydraulic uses & contols Hydraulic uses & contols Hydrostatic steering Integrated hydraulic circuits Power take-offs Power units Rotary actuators Sensors

Climate Control Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration Transportation

Key Products

Accumulators Advanced actuators CO₂ controls Electronic controllers Filter drivers Hand shut-off valves Heat exchangers Hose & fittings Pressure regulating valves Refrigerant distributors Safety relief valves Solenoid valves Thermostatic exonansion valves

Pneumatics Key Markets Aerospace Conveyor & material handling

Factory automation Life science & medical Machine tools Packaging machinery Transportation & automotive

Key Products

Air preparation Brass fittings & valves Manifolds Pneumatic accessories Pneumatic actuators & grippers Pneumatic valves & controls Quick disconnects Rotary actuators Rubber & thermoplastic hose & couplings Structural extrusions Thermoplastic tubing & fittings Vacuum generators, cups & sensors

Electromechanical Key Markets

Aerospace Factory automation Life science & medical Machine tools Packaging machinery Paper machinery Piastics machinery & converting Primary metals Semiconductor & electronics Textile Wire & cable

Key Products

AC/DC drives & systems Electric actuators, gantry robots & slides Bectrohydrostatic actuation systems Electromechanical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extrusions

Process Control

Key Markets Alternative fuels Biopharmaceuticals Chemical & refining Food & beverage Marine & shipbuilding Medical & dental Microelectronics Nuclear Power Offshore oil exploration Oil & gas Power generation Pulp & paper Steel Water/wastewater

Key Products

Analytical Instruments Analytical sample conditioning products & systems Chemical injection fittings & valves Fluoropolymer chemical delivery fittings, valves & pumps High purity gas delivery fittings, valves, regulators & digital flow controllers Industrial mass flow meters/ controllers Permanent no-weld tube fittings Precision industrial regulators & flow controllers Process control double block & bleeds

block & bleeds Process control fittings, valves, regulators & manifold valves

Filtration Key Markets

Aerospace Food & beverage Industrial plant & equipment Life sciences Marine Mobile equipment Oil & gas Power generation & renewable energy Process Transportation Water Purification

Key Products

Analytical gas generators Compressed air filters & dryers Engine air, coolant, fuel & oil filtration systems Fluid condition monitoring systems Hydraulic & lubrication filters Hydrogen, nitrogen & zero air generators Instrumentation filters Membrane & fiber filters Microfiltration Sterile air filtration Water desalination & purification filters & systems

Sealing & Shielding

Key Markets Aerospace Chemical processing Consumer Fluid power General industrial Information technology Life sciences Microelectronics Military Oil & gas Power generation Renewable energy Telecommunications Transportation

Key Products

Dynamic seals Elastomeric o-rings Electro-medical instrument design & assembly EMI shielding Extruded & precision-cut, fabricated elastomeric seals High temperature metal seals Homogeneous & inserted elastomeric shape Medical device fabrication & assembly Metal & plastic retained composite seals Shielded optical windows Silicone tubing & extrusions Thermal management Vibration dampening

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgaria, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com **HU – Hungary,** Budaörs Tel: +36 23 885 470 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com **ZA – South Africa,** Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN – India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG – Singapore Tel: +65 6887 6300

TH – Thailand, Bangkok Tel: +662 186 7000-99

TW – Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR – Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Toluca Tel: +52 72 2275 4200

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing. © 2014 Parker Hannifin Corporation. All rights reserved.

EMEA Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA) US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com

192-550026N1

September 2014